

Choice Based Credit and Grading Scheme (Revised - 2016) - University of Mumbai

CBGS(2012)/CBCGS-2016(R)

C. Syllabus Detailing and Learning objectives

Module	Chapter	Detailed Content	Syllabus Detailing	Learning Objectives
Module 1	Chapter 1 Set Theory (Hours -04)	Sets, Venn diagrams, Operations on Sets, Laws of set theory, Power sets and Products, Partition of sets, The Principle of Inclusion and Exclusion.	 Purpose: To make students understand the meaning of set; describe the laws of set theory; demonstrate the operations on set and explain the principle of inclusion/exclusion. Scope – Academic Aspects- set theory is used in the definitions of nearly all mathematical objects. Technology Aspect- logical and mathematical operators are used in programming languages. Application Aspect- Used for research areas like fuzzy sets. Students Evaluation – Questions for solving as a part of tutorial. Solving GATE questions based on set theory. 	 To define the sets and draw Venn diagrams for them (R) To solve problem based on operations on sets(A) To apply laws of set theory to solve expressions (U) To calculate power set and products of given set.(A) To state and apply the principle of Inclusion exclusion for solving real life problems. (A)
Module 2	Chapter 2 Logic (Hours -08)	Propositions and logical operations, Truth tables, Equivalence, Implications, Laws of Logic, Normal	Purpose- This chapter focuses on learning about propositions; represent English sentences in logical form; construct truth tables; and prepare formal proofs. In addition, this course will enhance critical reasoning skills and strengthen the ability to express that reasoning clearly.	 To describe the basics of propositional logic. (R) To express truth values for given statements and produce truth tables.(U)

Choice Based Credit and Grading Scheme (Revised - 2016) - University of Mumbai

		forms, Predicate and Quantifiers, Mathematical Induction	 Scope – 1. Academic Aspects- a formal language for representing knowledge and for making logical inferences. 2. Technology Aspect- It is used in Artificial Intelligence to infer rules; logical operators are used in programming languages. 3. Application Aspect- It is used to write formal rules in theoretical research work. 	 3. To derive conclusions using various laws of logic. (U) 4. To compare Boolean functions by expressing them into normal forms. (U) 5. To interpret statements using predicate and quantifiers. (A)
			 Students Evaluation – 1. Questions for solving as a part of tutorial. 2. Solving assignments. 3. Solving GATE questions based on Propositional Logic. 	 To understand mathematical induction and apply it to give formal proofs. (A)
Module 3	Chapter 3 Relations and Functions (Hours -12)	Relations, Paths and Digraphs, Properties and types of binary relations, Operations on relations, Closures, Warshall's	Purpose – To provide students with the knowledge of relations and functions; describe properties and their types; apply Warshall's algorithm to compute transitive closure; determine whether a relation on a set is a POSET or a lattice; compute composition, identity and inverse of a given function.	 To differentiate between Relations and Functions and describe their types.(R) To apply operations on relation using examples. (U) To apply Warshall's algorithm to find transitive closure (A).
		algorithm, Equivalence and Partial ordered relations, Poset, Hasse diagram and Lattice Functions: Types of functions- Injective,	 Scope – 1. Academic Aspects- idea of relations and functions is introduced and differentiated. 2. Technology Aspect- used to define mathematical models in theoretical computer science. 3. Application Aspect- Operations like union, intersection etc. are used in database systems. 	 4. To determine a relation on a set is a POSET or a Lattice and to draw corresponding Hasse Diagram (AN) 5. To compute composition, identity and inverse of a given function. (A)

Choice Based Credit and Grading Scheme (Revised - 2016) - University of Mumbai

Module 4	Chapter 4 Counting (Hours -06)	Surjective and Bijective, Composition of functions, Identity and Inverse function, Pigeon- hole principle Permutations, Combinations, Elements of Probability, Discrete Probability, Discrete Probability and Conditional Probability, Generating Functions and Recurrence Relations, Recursive Functions, Introduction to Functional Programming	 Student Evaluation - Questions for solving as a part of tutorial. Solving assignments. Solving GATE questions based on relations and functions. Purpose - make the student understand difference between permutation and combination; relate counting of outcomes to probability; define discrete probability and conditional probability; use recurrence relations, simplify codes using functional programming. Scope - Academic Aspects- Apply the theory of permutations and combinations to solve counting problems Technology Aspect- Counting techniques are used for game development. Application Aspect- The Fundamental Counting Principle is the guiding rule for finding the number of ways to accomplish a tasks. 	 6. To describe pigeonhole principle and use it to solve problems.(A) 1. To differentiate between permutation and combination. (U) 2. To describe the elements of probability. (R) 3. To define discrete probability and conditional probability. (R) 4. To Solve generating functions and recurrence relations and apply them for finding the complexity of algorithms. (A) 5. To use functional programming approach to simplify the code. (A)
		Programming	Student Evaluation -1. Questions for solving as a part of tutorial.2. Solving assignments.3. Solving GATE questions based on Counting.	
Modul e 5	Chapter 5 Graphs (Hours -06)	Definitions, Paths and circuits: Eulerian and Hamiltonian, Types	Purpose – This chapter explains graphs and computes sub-graphs; represent real-life situations with mathematical graphs; define paths and circuits; determine isomorphism in graphs.	 To define graphs and compute sub graphs. (R) To define paths and circuits and

Choice Based Credit and Grading Scheme (Revised - 2016) - University of Mumbai

of graphs, Sub- graphs, Isomorphism of graphs	Scope – 1. Academic Aspects- study of graphs that concerns with the relationship among edges and vertices.	 differentiate between Eulerian and Hamiltonian circuits. (U) 3. To determine isomorphism in graphs. (AN)
	 2. Technology Aspect- used in designing routing algorithms, communication protocols. 3. Application Aspect- to identify which programs can run concurrently having similar type of resource requirements using graph theory techniques; identify information flow in social networking etc. 	
	Student Evaluation –1. Questions for solving as a part of tutorial.2. Solving assignments.3. Solving GATE questions based on graphs.	
Algebraic structures with one binary operation: semigroup, monoid and group, Abelian group,	Purpose – Study of algebraic structures; define groups, semigroup, monoid, Abelian group; understand Isomorphism, Homomorphism and Automorphism; apply codes and group codes for various applications.	 To define algebraic structures with one binary operation. (R) To define and differentiate between semigroup, monoid, and group. (U)
Isomorphism, Homomorphism and Automorphism, Cyclic groups, Normal subgroups, Codes and group	 Scope – 1. Academic Aspects- understand algebraic structures and basics of coding theory. 2. Technology Aspect- used as a part of encryption tools. 3. Application Aspect- can be used for data compression, cryptography, error coding and network coding. 	 To define an Abelian group. (R) To state the definition of group Homomorphism, Isomorphism, Automorphism and use it to prove or
-	graphs, Isomorphism of graphs Algebraic structures with one binary operation: semigroup, monoid and group, Abelian group, Isomorphism, Homomorphism and Automorphism, Cyclic groups, Normal subgroups,	graphs, Isomorphism of graphs Scope – 1. Academic Aspects- study of graphs that concerns with the relationship among edges and vertices. 2. Technology Aspect- used in designing routing algorithms, communication protocols. 2. Technology Aspect- used in designing routing algorithms, communication protocols. 3. Application Aspect- to identify which programs can run concurrently having similar type of resource requirements using graph theory techniques; identify information flow in social networking etc. Student Evaluation – 1. Questions for solving as a part of tutorial. 2. Solving GATE questions based on graphs. Algebraic structures with one binary operation: semigroup, monoid and group, Abelian group, Isomorphism, Homomorphism and Automorphism, Cyclic groups, Normal subgroups, Codes and group Purpose – Scope – 1. Academic Aspects- understand algebraic structures and basics of coding theory. 2. Technology Aspect- used as a part of encryption tools. 3. Application Aspect- cab used for data compression, cryptography, error coding and network coding.

Choice Based Credit and Grading Scheme (Revised - 2016) - University of Mumbai

	Homomorphism, Isomorphism, Automorphism. (A)
 Student Evaluation – 1. Questions for solving as a part of tutorial. 2. Solving assignments. 3. Solving GATE questions based on algebraic structures and coding theory. 	 5. To define Cyclic groups and Normal Subgroups and give examples.(R) 6 To apply codes and group codes for various applications i.e. Data compression, cryptography, error coding and network coding. (A)